

Official mapscaler Documentation

Contents

	Installation
	Installing from PyPI

	Dependencies

	View Source on Github

	Loading Common Maps
	Simple Example

	Documentation

	Creating Shape Scalars from a Variable
	Data Prep and Cleaning

	Step 1: Choose a ‘base’ for scale

	Step 2: Create Scalars

	Additional Reading

	Shape Scaler
	Simple Example

	Documentation

	Bubble Scaler
	Simple Example

	Documentation

	Technical Details: Rearranging shapes

	License

	Contact

Installation

Installing from PyPI

pip install mapscaler

Dependencies

	NumPy [https://numpy.org/]

	GeoPandas [https://geopandas.org/index.html]

	Shapely [https://shapely.readthedocs.io/en/latest/index.html]

View Source on Github

View mapscaler on github [https://github.com/conditg/mapscaler]

Loading Common Maps

Simple Example

Import MapScaler and load a map of the US Counties:

import mapscaler as ms
loader = ms.MapLoader()
df = loader.fetch_counties()['df']

That’s it! You now have a map of the counties.

import matplotlib.pyplot as plt
import geoplot as gplt

#Reduce to the lower 48 for an easier demonstration
df = df[df.STATE_FIPS != '02'] # remove AK
df = df[df.STATE_FIPS != '15'] # remove HI
df = df[df.STATE_FIPS != '72'] # remove PR

gplt.polyplot(
 df,
 projection=gplt.crs.AlbersEqualArea(),
 figsize=(15,8),
)
plt.suptitle('Contiguous United States', fontsize=20, ha='center')
plt.show()

[image: US Counties]

Documentation

	
class mapscaler.MapLoader

	Bases: object

Quickly load common maps of the US as GeoPandas Dataframes.

Note

In most cases, the least detailed map options are used for performance.
All MapLoader methods return a sources item with links to find maps
with higher detail, if available.

	
fetch_counties(state_fips=None)

	Load a map of the US counties.

	Parameters

	state_fips (str) – Optional - State FIPS code as a string. Default is None which loads all states.

	Returns

	dict with 2 keys:

df is a GeoPandas DataFrame [https://geopandas.org/reference/geopandas.GeoDataFrame.html], including a column of shape objects.

sources is a dict of links to the original map source.

	Return type

	dict

	
fetch_states()

	Load a map of the US states, including Puerto Rico.

	Returns

	dict with 2 keys:

df is a GeoPandas DataFrame [https://geopandas.org/reference/geopandas.GeoDataFrame.html], including a column of shape objects.

sources is a dict of links to the original map source.

	Return type

	dict

Creating Shape Scalars from a Variable

In this tutorial, we’ll use a GeoPandas dataframe with 2 columns: a geometry column of US county shapes, and a population column of numeric values. (Of course, the following steps will work for other variables besides population - any numeric input will do.

Data Prep and Cleaning

Import MapScaler and load a map of the US Counties:

import mapscaler as ms
loader = ms.MapLoader()
df = loader.fetch_counties()['df']

We’ll restrict this example to the continuous 48 for easier visualizations, so let’s drop Alaska, Hawaii, and Puerto Rico.

df = df[df.STATE_FIPS != '02'] # AK
df = df[df.STATE_FIPS != '15'] # HI
df = df[df.STATE_FIPS != '72'] # PR

Step 1: Choose a ‘base’ for scale

First, store the area of each shape as a columns in your dataframe. You can pull this in from an official GIS source (Such as the Census Bureau), or you can calculate the areas directly using the GeoPandas Shapely objects, which we’ll do here:

df['area'] = [shape.area for shape in df['geometry']]

While scalars clearly define proportions, they do not specify any sizes specifically. For example, Queens County, NY has about double the population of Mecklenburg, NC. This could be satisfied by respective areas of 2 and 1, 20 and 10, 2 million and 1 million, etc. You must specify some anchor for the overall scale of the new map.

There’s no reliable programmatic way to choose this scale, because it depends highly on the distribution of shapes in your chart. Here’s the extremes:

	You could choose the densest county for your base (New York County). New York County would remain the original size, and ALL other counties would shrink. The result would be mathematically accurate proportions between counties, but they would all be very small and spaced out, an ugly visualization.

	You could choose the least dense counties for your base (Garfield County, Montana). Garfield County would remain the same size, and ALL the other counties would expand dramatically. The increased counties would all overlap each other, and mapscaler will take a very long time to find a solution with no overlapping states, and by that point, the counties will have been rearranged so much that the solution may not be recognizeable as a map of the US.

In short, it’s a tradeoff between having large individual shapes, and having a map with an overall shape that still resembles the original. Therefore, the best rule of thumb is to pick a base shape somewhere in the 60th-80th percentile of variable density. This will result in over half your shapes shrinking and less than half of them increasing. Start there and tweak as needed.

In this tutorial, we’ll use Washtenaw County, Michigan. This was determined with a small amount of trail & error by running Shape Scaler, and inspecting the output, which is covered in the next section. Store the variable value (population) and the area of your base:

base_fips = '26161'
base_population = df[df.FIPS==base_fips]['EST_POP_2019'].values[0]
base_area = df[df.FIPS==base_fips]['area'].values[0]

Step 2: Create Scalars

Given base values for area and a variable var, this formula will calculate the appropriate scalar by which to adjust the area of given shape abc:

[image: Full Equation]

Formula Explanation

The goal is to scale the area of shape abc until it has the same variable-to-area ratio as the base, like so:

[image: Proportion]
Solving for scalar gives:

[image: Coordinate Scalar]
Finally, when you scale a shape’s coordinates by some scalar \(x\), the area scales at \(x2\) (see Additional Reading below). Therefore, to scale the area of a shape, the area scalar is the square root of each coordinate scalar.

df['scaleby'] = ((df['EST_POP_2019']*base_area) / (df['area']*base_population))**.5

This scaleby column is ready to be passed as input to Shape Scaler or Bubble Scaler, which will be covered next.

Additional Reading

	Square-Cube Law [https://en.wikipedia.org/wiki/Square-cube_law]

	Calculating the scale factor to resize a polygon to a specific size [https://math.stackexchange.com/questions/1889423/calculating-the-scale-factor-to-resize-a-polygon-to-a-specific-size]

Shape Scaler

Simple Example

[image: _images/ssdemo.png]
NOTE: This example uses the variable df as seen in the example in Loading Common Maps.

import mapscaler as ms

ss = ms.ShapeScaler()
scaled_df = ss.scale_map(df, 'scaleby', map_vel=.001, group_vel=.15, verbose=True)

If verbose, scale_map() will print progress as it goes (truncated below):

Iteration 1
--73 overlapping groups remaining
Iteration 2
--79 overlapping groups remaining
...
[truncated]
...
Iteration 62
--2 overlapping groups remaining
Iteration 63
--1 overlapping groups remaining
Iteration 64
Separated in 64 iterations

Now, let’s visualize the output, scaled_df:

import matplotlib.pyplot as plt
import geoplot as gplt
import numpy as np

gplt.choropleth(
 df, hue=[np.log(x) for x in df.EST_POP_2019],
 projection=gplt.crs.AlbersEqualArea(), cmap='viridis',
 figsize=(15,8),
)
plt.title('BEFORE', fontsize=30, loc='left')
plt.show()

gplt.choropleth(
 scaled_df, hue=[np.log(x) for x in df.EST_POP_2019],
 projection=gplt.crs.AlbersEqualArea(), cmap='viridis',
 figsize=(15,8),
)
plt.title('AFTER', fontsize=30, loc='left')
plt.show()

Documentation

	
class mapscaler.ShapeScaler

	Bases: mapscaler.mapscaler.BaseScaler

	
get_group_centroid(obj_list)

	Calculate the geometric centroid of a group of objects.

	Parameters

	obj_list (list) – Iterable of Shapely objects (Polygon or MultiPolygon)

	Returns

	[x,y] coordinates of the entire group’s geometric centroid

	Return type

	list

	
get_group_members(original_df, property_col)

	Returns the members of each group, given a column from the
original dataframe to print. Useful for debugging / inspecting groups that are too slow to separate.

	Parameters

	
	original_df (GeoPandas DataFrame) – GeoPandas Dataframe previously passed to scale_map() method

	property_col (str) – String name of column in original_df that identifies each shape;
Typically a name or ID

	Returns

	key, value pairs where key is an arbitrary group number and value is a list
of property_col values describing the group members

	Return type

	dict

	
get_overlapping_groups(df, geo, buffer)

	Return all groups of overlapping shapes in a map.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – string name of the geometry column in df

	buffer (float) – Euclidean distance required between shapes before they are considered non-overlapping

	Returns

	key, value pairs where key is is the group id and value is a list of shape ids.

	Return type

	dict

	
index_geo_col(df, geo)

	Returns a mapping of Shape IDs to their initial index in the dataframe.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – string name of the geometry column in df

	Returns

	key, value pairs where key is is a shape id, and value is its row index in df

	Return type

	dict

	
index_overlapping_groups()

	Return a mapping of Shape IDs to their current overlapping groups;
Inverse of get_overlapping_groups().

	Returns

	key, value pairs where key is a shape id, and value is a group id

	Return type

	dict

	
move_shape(shape, movement)

	Move a Shapely Polygon by a given movement vector.

	Parameters

	
	shape (Shapely Polygon) – Shape to be moved

	movement (list or tuple) – vector [x,y] describing the movement

	Returns

	Shape with updated coordinates

	Return type

	Shapely Polygon

	
nudge_shapes(df, geo, map_vel, group_vel)

	Nudge overlapping shapes away from group and map centroids.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – string name of the geometry column in df

	map_vel (float) – Velocity at which each shape is nudged away from the centroid of the whole map

	group_vel (float) – Velocity at which each shape is nudged away from the centroid of its
respective group of overlapping shapes

	Returns

	Dataframe with updated geometry column

	Return type

	GeoPandas DataFrame

	
scale_map(df, scaleby, geo='geometry', map_vel=0.01, group_vel=0.1, buffer=0, max_iter=100, verbose=False)

	Automatically scale the parts of any map by any variable, without any
overlapping shapes and with minimal distortion.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	scaleby (str) – string name of the column in df with scalar values

	geo (str) – Optional - string name of the geometry column in df; default is 'geometry'

	map_vel (float) – Optional - Velocity at which each shape is nudged away from the centroid
of the whole map; dfault is .01

	group_vel (float) – Optional - Velocity at which each shape is nudged away from the centroid of its
respective group of overlapping shapes; default is .1

	buffer (float) – Optional - Euclidean distance required between shapes before they
are considered non-overlapping; default is 0

	max_iter (int) – Optional - Maximum number of attempts to nudge shapes away from
each other; default is 100

	verbose (boolean) – Optional - Whether to print progress as shapes are separated;
default is False

	Returns

	Dataframe with updated geometry column

	Return type

	GeoPandas DataFrame

	
scale_shapes(df, scaleby, geo)

	Scale the Coordinates of all map shapes by their respective scalars.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	scaleby (str) – string name of the column in df with scalar values

	geo (str) – string name of the geometry column in df

Warning

This function scales by coordinates. Scaling coordinates by \(x\) will
scale the area of the shape by \(x^2\). More info: Creating Shape Scalars from a Variable

	
separate_map(df, geo, map_vel, group_vel, buffer, max_iter, verbose)

	Reposition shapes on a map so that none of them overlap.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – String name of the geometry column in df

	map_vel (float) – Velocity at which each shape is nudged away from the centroid
of the whole map

	group_vel (float) – Velocity at which each shape is nudged away from the centroid of its
respective group of overlapping shapes

	buffer (float) – Euclidean distance required between shapes before they
are considered non-overlapping

	max_iter (int) – Maximum number of attempts to nudge shapes away from each other

	verbose (boolean) – Whether to print progress as shapes are separated

	Returns

	Dataframe with updated geometry column

	Return type

	GeoPandas DataFrame

	
update_group_centroids(df, geo)

	Calculate the geometric centroid of all overlapping groups.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – string name of the geometry column in df

	Returns

	key, value pairs where key is the group id, and value is the group centroid

	Return type

	dict

Bubble Scaler

Simple Example

[image: _images/bsdemo.png]
NOTE: This example uses the variable df as seen in the example in Loading Common Maps.

import mapscaler as ms
import numpy as np

bs = ms.BubbleScaler()
bubble_df = bs.scale_map(df, 'scaleby', usa_albers=True,
 map_vel=.001, group_vel=.15, verbose=True)

If verbose, scale_map() will print progress as it goes (truncated below):

Iteration 1
--93 overlapping groups remaining
Iteration 2
--89 overlapping groups remaining
...
[truncated]
...
Iteration 42
--2 overlapping groups remaining
Iteration 43
--2 overlapping groups remaining
Iteration 44
Separated in 44 iterations

Now, let’s visualize the output bubble_df:

import matplotlib.pyplot as plt
import geoplot as gplt
import numpy as np

gplt.choropleth(
 df, hue=[np.log(x) for x in df.EST_POP_2019],
 projection=gplt.crs.AlbersEqualArea(), cmap='viridis',
 figsize=(15,8),
)
plt.title('BEFORE', fontsize=30, loc='left')
plt.show()

gplt.choropleth(
 bubble_df, hue=[np.log(x) for x in df.EST_POP_2019],
 figsize=(15,8), linewidth=0, cmap='viridis',
)
plt.title('AFTER', fontsize=30, loc='left')
plt.show()

Documentation

	
class mapscaler.BubbleScaler

	Bases: mapscaler.mapscaler.BaseScaler

	
convert_to_bubbles(df, geo)

	Convert all shapes in a geopandas dataframe to circles, retaining areas and centroid coordinates.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – String name of the geometry column in df

	Returns

	Dataframe with updated geometry column, each shape converted to a same-area circle

	Return type

	GeoPandas DataFrame

	
get_group_centroid(obj_list)

	Calculate the geometric centroid of a group of objects.

	Parameters

	obj_list (list) – Iterable of Shapely objects (Polygon or MultiPolygon)

	Returns

	[x,y] coordinates of the entire group’s geometric centroid

	Return type

	list

	
get_group_members(original_df, property_col)

	Returns the members of each group, given a column from the
original dataframe to print. Useful for debugging / inspecting groups that are too slow to separate.

	Parameters

	
	original_df (GeoPandas DataFrame) – GeoPandas Dataframe previously passed to scale_map() method

	property_col (str) – String name of column in original_df that identifies each shape;
Typically a name or ID

	Returns

	key, value pairs where key is an arbitrary group number and value is a list
of property_col values describing the group members

	Return type

	dict

	
get_overlapping_groups(df, geo, buffer)

	Return all groups of overlapping shapes in a map.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – string name of the geometry column in df

	buffer (float) – Euclidean distance required between shapes before they are considered non-overlapping

	Returns

	key, value pairs where key is is the group id and value is a list of shape ids.

	Return type

	dict

	
index_geo_col(df, geo)

	Returns a mapping of Shape IDs to their initial index in the dataframe.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – string name of the geometry column in df

	Returns

	key, value pairs where key is is a shape id, and value is its row index in df

	Return type

	dict

	
index_overlapping_groups()

	Return a mapping of Shape IDs to their current overlapping groups;
Inverse of get_overlapping_groups().

	Returns

	key, value pairs where key is a shape id, and value is a group id

	Return type

	dict

	
move_shape(shape, movement)

	Move a Shapely Polygon by a given movement vector.

	Parameters

	
	shape (Shapely Polygon) – Shape to be moved

	movement (list or tuple) – vector [x,y] describing the movement

	Returns

	Shape with updated coordinates

	Return type

	Shapely Polygon

	
nudge_shapes(df, geo, map_vel, group_vel)

	Nudge overlapping shapes away from group and map centroids.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – string name of the geometry column in df

	map_vel (float) – Velocity at which each shape is nudged away from the centroid of the whole map

	group_vel (float) – Velocity at which each shape is nudged away from the centroid of its
respective group of overlapping shapes

	Returns

	Dataframe with updated geometry column

	Return type

	GeoPandas DataFrame

	
scale_map(df, scaleby, geo='geometry', usa_albers=False, map_vel=0.01, group_vel=0.1, buffer=0, max_iter=100, verbose=False)

	Convert all shapes in a map to circles, and automatically scale the parts of any map by any variable,
without any overlapping shapes and with minimal distortion.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	scaleby (str) – string name of the column in df with scalar values

	geo (str) – Optional - string name of the geometry column in df; default is 'geometry'

	usa_albers (boolean) – Optional - Whether to apply an albers projection prior to converting to bubbles.
More Info on Projections [https://en.wikipedia.org/wiki/Albers_projection]. Default is False

	map_vel (float) – Optional - Velocity at which each shape is nudged away from the centroid
of the whole map; dfault is .01

	group_vel (float) – Optional - Velocity at which each shape is nudged away from the centroid of its
respective group of overlapping shapes; default is .1

	buffer (float) – Optional - Euclidean distance required between shapes before they
are considered non-overlapping; default is 0

	max_iter (int) – Optional - Maximum number of attempts to nudge shapes away from
each other; default is 100

	verbose (boolean) – Optional - Whether to print progress as shapes are separated;
default is False

	Returns

	Dataframe with updated geometry column

	Return type

	GeoPandas DataFrame

	
scale_shapes(df, scaleby, geo)

	Scale the Coordinates of all map shapes by their respective scalars.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	scaleby (str) – string name of the column in df with scalar values

	geo (str) – string name of the geometry column in df

Warning

This function scales by coordinates. Scaling coordinates by \(x\) will
scale the area of the shape by \(x^2\). More info: Creating Shape Scalars from a Variable

	
separate_map(df, geo, map_vel, group_vel, buffer, max_iter, verbose)

	Reposition shapes on a map so that none of them overlap.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – String name of the geometry column in df

	map_vel (float) – Velocity at which each shape is nudged away from the centroid
of the whole map

	group_vel (float) – Velocity at which each shape is nudged away from the centroid of its
respective group of overlapping shapes

	buffer (float) – Euclidean distance required between shapes before they
are considered non-overlapping

	max_iter (int) – Maximum number of attempts to nudge shapes away from each other

	verbose (boolean) – Whether to print progress as shapes are separated

	Returns

	Dataframe with updated geometry column

	Return type

	GeoPandas DataFrame

	
update_group_centroids(df, geo)

	Calculate the geometric centroid of all overlapping groups.

	Parameters

	
	df (GeoPandas DataFrame) – GeoPandas Dataframe

	geo (str) – string name of the geometry column in df

	Returns

	key, value pairs where key is the group id, and value is the group centroid

	Return type

	dict

Technical Details: Rearranging shapes

Shape Scaler works iteratively, gently and strategically nudging the polygons in your map until they don’t overlap. Below is a quick overview, using 4 circles to create a minimalist example.

[image: _images/original.png]
Suppose these circles are scaled by a variable, and as a consequence, there’s some unwanted overlap:

[image: _images/scaled.png]
The first step to removing overlap is to find the geometric centroid of the map, all shapes included:

[image: _images/step1.png]
Next, organize all the shapes into groups with other shapes they overlap. Shapes that don’t overlap any others do not need to be moved, so they are not members of any group.

[image: _images/step2.png]
Next, find the centroid of each group:

[image: _images/step3.png]
The direction that each shape will move is a function of its position in relation to BOTH the map centroid, and its group centroid. The degree to which each centroid relation is considered in the formation of the direction vector is determined by the arguments map_vel and group_vel. In most cases, the group centroid should be the primary driver of the direction vector, and the map centroid should just be included minimally to achieve faster resolution in maps with dense groups.

[image: _images/step4.png]
[image: _images/step5.png]
The Bubble Scaler works the same way after first converting all shapes in your map to circles with the equivalent area.

License

mapscaler is licensed under the GNU General Public License v3.0. This license can be read here [https://choosealicense.com/licenses/gpl-3.0/].

Contact

Hi! if you have questions, you can email me at conditg@gmail.com.

Index

 B
 | C
 | F
 | G
 | I
 | M
 | N
 | S
 | U

B

 	
 	BubbleScaler (class in mapscaler)

C

 	
 	convert_to_bubbles() (mapscaler.BubbleScaler method)

F

 	
 	fetch_counties() (mapscaler.MapLoader method)

 	
 	fetch_states() (mapscaler.MapLoader method)

G

 	
 	get_group_centroid() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

 	get_group_members() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

 	
 	get_overlapping_groups() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

I

 	
 	index_geo_col() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

 	
 	index_overlapping_groups() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

M

 	
 	MapLoader (class in mapscaler)

 	
 	move_shape() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

N

 	
 	nudge_shapes() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

S

 	
 	scale_map() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

 	scale_shapes() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

 	
 	separate_map() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

 	ShapeScaler (class in mapscaler)

U

 	
 	update_group_centroids() (mapscaler.BubbleScaler method)

 	(mapscaler.ShapeScaler method)

 _static/file.png

_images/full_equation.gif
abc_var X base_area

abc_area X base_var

_images/original.png
Original map (no overlaps)

_static/up-pressed.png

_images/bsdemo.png
BEFORE

AFTER

_static/minus.png

_images/counties.png
Continguous United States

e,

_static/plus.png

_images/scaled.png
Map after scaling by some variable

_images/ssdemo.png
BEFORE

AFTER

_images/proportion_comparison.gif
base_var abc_var

base area abc area X scalar

_static/up.png

_images/scalar.gif
abc_var X base_area

scalar
abc area X base var

_images/step1.png
Step 1: Find Centroid of all shapes in the map

_images/step2.png
Step 2: Identify groups of shapes that overlap
(Only one group, in this simple case)

I ina group

_images/step3.png
Step 3: Identify the centroid of each group
(Only one group, in this simple case)

Im n a group

nav.xhtml

 Table of Contents

 		
 Official mapscaler Documentation

 		
 Installation

 		
 Installing from PyPI

 		
 Dependencies

 		
 View Source on Github

 		
 Loading Common Maps

 		
 Simple Example

 		
 Documentation

 		
 Creating Shape Scalars from a Variable

 		
 Data Prep and Cleaning

 		
 Step 1: Choose a ‘base’ for scale

 		
 Step 2: Create Scalars

 		
 Formula Explanation

 		
 Additional Reading

 		
 Shape Scaler

 		
 Simple Example

 		
 Documentation

 		
 Bubble Scaler

 		
 Simple Example

 		
 Documentation

 		
 Technical Details: Rearranging shapes

 		
 License

 		
 Contact

_static/ajax-loader.gif

_images/step4.png
Step 4: Direction of the movement vector for each shape is determined
by both centroids. Only the direction for the Red shape is demonstrated below

_images/step5.png
Step 5: Repeat Steps 2-4 until no groups remain

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

